Thursday, March 14, 2013

Study of dragonfly prey detection at MBL wins PNAS Cozzarelli Prize

Study of dragonfly prey detection at MBL wins PNAS Cozzarelli Prize [ Back to EurekAlert! ] Public release date: 14-Mar-2013
[ | E-mail | Share Share ]

Contact: Diana Kenney
dkenney@mbl.edu
508-289-7139
Marine Biological Laboratory

Research has implications for development of 'bioinspired' robotics

MBL, WOODS HOLE, MASS.Paloma T. Gonzalez-Bellido, a postdoctoral scientist at the Marine Biological Laboratory (MBL) and her colleagues have been awarded a 2012 Cozzarelli Prize by the editorial board of the Proceedings of the National Academy of Sciences (PNAS).

Gonzalez-Bellido and colleagues were honored for the "scientific excellence and originality" of their study of prey detection and interception in dragonflies, which won in the category of "Biological Sciences." Out of more than 3,700 papers published in the journal last year, the editors selected Gonzalez-Bellido's paper and five others for the Cozzarelli Prize.

The Gonzalez-Bellido paper provides insight into basic visual-motor neural processing, and has implications for the development of "bioinspired" prosthetics for humans.

"I am honored to receive recognition for this work, for which we bridged the clinical and neuroethological fields, and developed new techniques," says Gonzalez-Bellido. "This award has provided me with fuel to keep up the hard work and further my research plans."

In order for a dragonfly to intercept its prey in midair (which dragonflies do with a 95% success rate), it needs to quickly track the prey and predict its future location. To understand how they undertake this complex task, Gonzalez-Bellido and her co-authors studied a small group of 16 motor neurons, called target-selective descending neurons (TSDNs), in the dragonfly Libellula luctuosa. These neurons, originally discovered by co-author Robert M. Olberg in the green darner dragonfly, originate in the brain and extend to the thoracic ganglia, where the neural signal is interpreted and translated into wing muscle movements. Surprisingly, the scientists found that this small group of neurons can detect the direction of target prey with high accuracy and reliability across 360 degrees, and that this information is relayed from the brain to the wing motor centers in population vector form.

In 1988, co-author Apostolos Georgopoulos and his colleagues showed in monkeys that from the activity of neurons in the motor cortex, the population vector algorithm can predict the monkey's upcoming arm movement. However, to achieve a more accurate prediction with this algorithm, upwards of 200 neurons were needed. Thus, the present discovery that a highly accurate neural code carrying information about target direction can be achieved with just 16 neurons is enlightening, and could have applications in the development of bioinspired robots. (Georgopolos is an MD-PhD at the University of Minnesota/Veterans Administration Medical Center who is interested in the development of prosthetics.)

Randy Schekman, PhD, editor-in-chief of PNAS, describes the papers chosen for the Cozzarelli Prize as being "of exceptional interest These papers are not merely technically superior but have had special impact and maybe novel techniques or novel applications of techniques, or very important discoveries."

To measure the voltage change in the dragonfly neurons, Gonzalez-Bellido used a classical technique called intracellular recording, which was originally developed by Kenneth S. (Kacy) Cole at the MBL and others. This technique, she says, provided very clear, high-quality data in the dragonfly, which she sees as a promising model for understanding the evolution of neural systems. "It's exciting that the same computation [the population vector algorithm] is used by monkeys and dragonflies for this task. Dragonflies belong to the most ancient groups of flying insects on earth, and they have changed little in 250 million years" she says.

###

Gonzalez-Bellido completed the dragonfly study in the laboratory of MBL Senior Scientist Roger Hanlon, director of the MBL's Program in Sensory Physiology and Behavior. She began the research at Howard Hughes Medical Institute's Janelia Farm Research Campus, where she was previously a postdoctoral scientist.

The Cozzarelli Award was established in 2005 and named in 2007 to honor late PNAS editor-in-chief Nicholas R. Cozzarelli. Gonzalez-Bellido and the other awardees will be recognized at an awards ceremony during the National Academy of Sciences Annual Meeting on April 28, 2013, in Washington, D.C.

Citation:

Gonzalez-Bellido PT, Peng H, Yang J, Georgopoulos AP and Olberg RM (2012) Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. PNAS 110: 696-701 /doi/10.1073/pnas.1210489109

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation. A corps of more than 270 scientists and support personnel pursue research year-round at the MBL, joined each year by more than 400 visiting scientists, summer staff, and research associates from hundreds of institutions around the world. Among the scientists with a significant affiliation with the MBL are 55 Nobel Laureates (since 1929).


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Study of dragonfly prey detection at MBL wins PNAS Cozzarelli Prize [ Back to EurekAlert! ] Public release date: 14-Mar-2013
[ | E-mail | Share Share ]

Contact: Diana Kenney
dkenney@mbl.edu
508-289-7139
Marine Biological Laboratory

Research has implications for development of 'bioinspired' robotics

MBL, WOODS HOLE, MASS.Paloma T. Gonzalez-Bellido, a postdoctoral scientist at the Marine Biological Laboratory (MBL) and her colleagues have been awarded a 2012 Cozzarelli Prize by the editorial board of the Proceedings of the National Academy of Sciences (PNAS).

Gonzalez-Bellido and colleagues were honored for the "scientific excellence and originality" of their study of prey detection and interception in dragonflies, which won in the category of "Biological Sciences." Out of more than 3,700 papers published in the journal last year, the editors selected Gonzalez-Bellido's paper and five others for the Cozzarelli Prize.

The Gonzalez-Bellido paper provides insight into basic visual-motor neural processing, and has implications for the development of "bioinspired" prosthetics for humans.

"I am honored to receive recognition for this work, for which we bridged the clinical and neuroethological fields, and developed new techniques," says Gonzalez-Bellido. "This award has provided me with fuel to keep up the hard work and further my research plans."

In order for a dragonfly to intercept its prey in midair (which dragonflies do with a 95% success rate), it needs to quickly track the prey and predict its future location. To understand how they undertake this complex task, Gonzalez-Bellido and her co-authors studied a small group of 16 motor neurons, called target-selective descending neurons (TSDNs), in the dragonfly Libellula luctuosa. These neurons, originally discovered by co-author Robert M. Olberg in the green darner dragonfly, originate in the brain and extend to the thoracic ganglia, where the neural signal is interpreted and translated into wing muscle movements. Surprisingly, the scientists found that this small group of neurons can detect the direction of target prey with high accuracy and reliability across 360 degrees, and that this information is relayed from the brain to the wing motor centers in population vector form.

In 1988, co-author Apostolos Georgopoulos and his colleagues showed in monkeys that from the activity of neurons in the motor cortex, the population vector algorithm can predict the monkey's upcoming arm movement. However, to achieve a more accurate prediction with this algorithm, upwards of 200 neurons were needed. Thus, the present discovery that a highly accurate neural code carrying information about target direction can be achieved with just 16 neurons is enlightening, and could have applications in the development of bioinspired robots. (Georgopolos is an MD-PhD at the University of Minnesota/Veterans Administration Medical Center who is interested in the development of prosthetics.)

Randy Schekman, PhD, editor-in-chief of PNAS, describes the papers chosen for the Cozzarelli Prize as being "of exceptional interest These papers are not merely technically superior but have had special impact and maybe novel techniques or novel applications of techniques, or very important discoveries."

To measure the voltage change in the dragonfly neurons, Gonzalez-Bellido used a classical technique called intracellular recording, which was originally developed by Kenneth S. (Kacy) Cole at the MBL and others. This technique, she says, provided very clear, high-quality data in the dragonfly, which she sees as a promising model for understanding the evolution of neural systems. "It's exciting that the same computation [the population vector algorithm] is used by monkeys and dragonflies for this task. Dragonflies belong to the most ancient groups of flying insects on earth, and they have changed little in 250 million years" she says.

###

Gonzalez-Bellido completed the dragonfly study in the laboratory of MBL Senior Scientist Roger Hanlon, director of the MBL's Program in Sensory Physiology and Behavior. She began the research at Howard Hughes Medical Institute's Janelia Farm Research Campus, where she was previously a postdoctoral scientist.

The Cozzarelli Award was established in 2005 and named in 2007 to honor late PNAS editor-in-chief Nicholas R. Cozzarelli. Gonzalez-Bellido and the other awardees will be recognized at an awards ceremony during the National Academy of Sciences Annual Meeting on April 28, 2013, in Washington, D.C.

Citation:

Gonzalez-Bellido PT, Peng H, Yang J, Georgopoulos AP and Olberg RM (2012) Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. PNAS 110: 696-701 /doi/10.1073/pnas.1210489109

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation. A corps of more than 270 scientists and support personnel pursue research year-round at the MBL, joined each year by more than 400 visiting scientists, summer staff, and research associates from hundreds of institutions around the world. Among the scientists with a significant affiliation with the MBL are 55 Nobel Laureates (since 1929).


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2013-03/mbl-sod031413.php

2012 Olympics Chad Everett London Olympics Kristen Stewart Rupert Sanders Photos 2016 Olympics TD Bank mountain lion

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.